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ABSTRACT

Fast automated analysis of hyperspectral imagery can inform
observation planning and tactical decisions during planetary
exploration. Products such as mineralogical maps can focus
analysts‘ attention on areas of interest and assist data mining
in large hyperspectral catalogs. In this work, sparse spectral
unmixing drafts mineral abundance maps with Compact Re-
connaissance Imaging Spectrometer (CRISM) images from
the Mars Reconnaissance Orbiter. We demonstrate a novel
“superpixel” segmentation strategy enabling efficient unmix-
ing in an interactive session. Tests correlate automatic un-
mixing results based on redundant spectral libraries against
hand-tuned summary products currently in use by CRISM re-
searchers.

Index Terms— Sparse Bayesian Unmixing, CRISM, Hy-
perspectral Images, Superpixels, Image Segmentation

1. INTRODUCTION

Planetary exploration scenarios hold special challenges for
hyperspectral image analysis. With the exception of iso-
lated landing sites the ground-truth surface composition is
unknown. The number and character of spectral sources is
generally uncertain. A trained analyst can guess probable
constituents by inspecting individual spectra, but increasing
data volumes will preclude comprehensive analysis of this
kind. For example, the Compact Reconnaissance Imaging
Spectrometer (CRISM) aboard the Mars Reconnaissance Or-
biter [1] is collecting images at unprecedented spatial and
spectral resolution. It will return over a terabyte of data to
Earth over its nominal mission, which is far larger than our
capacity for exhaustive manual study.

Timely analysis will require techniques that automatically
search an image and summarize possible constituents. With
some oversimplification we can categorize current search
strategies as “supervised” or “unsupervised.” Supervised
methods use a detection function, developed on previous data
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by hand or statistical techniques, to identify one or more spe-
cific target signals. For example, hand-selected band ratios
can reveal spectral features that are diagnostic of particular
minerals [2, 3]. Other supervised detection strategies exploit
classifiers such as neural networks or decision trees. These
are suited to focused searches for specific mineral types; they
may not notice unanticipated or anomalous mineralogy. The
detection decision does not always generalize to new scenes
and in general only detects constituents that have already
been observed and for which training data is available. Al-
ternatively, unsupervised techniques like PCA summarize
structure inherent in the spectral data of each new image.
Purely unsupervised results are not always physically mean-
ingful, and may ignore subtle or localized mineralogy since
they minimize reconstruction error over the entire scene.

Here we examine a spectral unmixing approach to min-
eralogical search. Our method leverages a redundant library
of source spectra from laboratory experiments or previous
remote observations. A sparse Bayesian unmixing algorithm
computes statistically likely combinations of constituents
from this set of candidate sources. A “superpixel” segmen-
tation improves analysis time by orders of magnitude for use
in an interactive user session. Preliminary tests suggest that
Bayesian spectral unmixing can assist analysis of CRISM
data and hyperspectral imagery in general.

2. APPROACH

We use a linear mixing model where m source spectra in w
wavelengths combine to yield n observations:
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Each wavelength ) is associated with an n x 1 observation
vector X, and an m X 1 source vector s,. Here A isann xm
mixing matrix whose entries describe the contribution of each
source signal to the resulting observation. We assume addi-
tive zero-mean Gaussian noise of variance o2. More generally
one can treat the entire spectrum of independent wavelengths
as columns of an m X w source matrix S and an n x w obser-
vation matrix X. We will index matrix entries with subscripts



so that the ith observation on bandwidth A is X;,. Given
source and observation matrices, the unmixing problem aims
to recover the mixing matrix A.

2.1. Sparse Bayesian Unmixing

Our geographic linear mixing model places several con-
straints on A. Minerals’ reflectances represent fractions
of incident illumination and combine in proportion to their
abundance on the imaged surface. To reflect this physical
intuition, entries of A must be zero or positive. Standard
non-negative unmixing strategies like Nonnegative Matrix
Factorization minimize squared reconstruction error while
enforcing positivity [4]. In our case there is another impor-
tant consideration. The source library may contain many
more possible sources than actually exist in the scene, so we
favor sparse solutions where most entries of A are zero.

We enforce both non-negativity and sparsity using an ex-
ponential prior distribution G parameterized with hyperpa-
rameter «, on entries of the mixing matrix. From Bayes’ rule:
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We maximize this probability with an iterative gradient de-
scent procedure similar to the Bayesian Positive Source Sep-
aration approach described by Moussaoui et al. [5]. Taking
log p(A|x, «) and dropping constant terms produces the ob-
jective function V(A):
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Note that this amounts to a least-squares error minimiza-
tion with an L1-norm penalty term, similar to the sparsity-
inducing LASSO estimator [6]. We maximize this with
iterative ascent of the gradient of V(A) with respect to A:
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The density of the exponential distribution is zero for nega-
tive values of A. Our subgradient-inspired approach replaces
negative gradient values with zero for entries A;; within nu-
merical tolerance of zero. This produces an n X m matrix
W(A) representing the update direction:
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The iterative update at time ¢ follows the update direction ®°
for the positive step size [3:
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At each iteration a line search identifies the optimal step size
(B. Finally we estimate the noise parameter o from the re-
projected observations as in Moussaoui et al [5], fitting noise
and mixing parameters in turn until reaching a local optimum.
This strategy generally identifies a local Maximum A Priori
estimate in less than 100 iterations, permitting real-time spec-
tral unmixing of user-selected image regions.

2.2. Image Segmentation

Segmentation is a valuable tool for mineralogical search. Our
goal is to draft compositional maps for large scale data mining
of trends and detection of novel mineralogy. This requires an-
alyzing entire images containing thousands or millions of dis-
tinct spectra, and spectral unmixing algorithm is still too slow
to exhaustively unmix all pixels during an interactive ses-
sion. Segmentation permits a single mean spectrum to stand
in for many pixels, potentially improving run time by orders
of magnitude. In addition, segmentation counters pixel-level
noise that might otherwise produce false positive detections.
Real (non-noise) signals generally come from objects such as
outcrops that subtend several adjacent pixels in the high reso-
lution imagery. We can exploit this fact by analyzing the mean
spectra of physically-connected regions within the image.
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Fig. 1. Segmentation from image 3el12. Finer segmentations
provide additional resolution at the cost of greater compu-
tation time and sensitivity to noise. Left: Original subim-
age. Center: coarse segmentation, minimum region size 100.
Right: fine segmentation, minimum region size 20.

For mineralogical search it is important that small outlier
units of surface material have independent segments. On the
other hand one can safely split larger units of surface material
into multiple segments. This leads us to intentionally over-
segment the scene, a technique known in the Computer Vi-
sion community as superpixel segmentation. Each superpixel
provides some small connected image region that is composi-
tionally homogeneous [7]. Segmentations that produce 3000-
5000 superpixels require approximately 20 minutes per image
with a modern desktop processor.

We compute superpixels with a graph segmentation. The
pixel grid defines an 8-connected graph of vertices and edges.
We define edge weights d(X;, X} ) as the sum of squared dif-
ferences in all wavelengths between neighboring pixels:
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Fig. 2. CRISM 3el2 (R : 2.0um, G : 1.5um, B : 1.1um).

We cluster pixels by merging them into successively larger
subgraphs using the technique of Felzenszwalb et al [8]. The
Felzenszwalb criterion merges neighboring subgraphs when-
ever the weight associated with their smallest connecting edge
is some threshold larger than the minimum internal weight in
either subgraph. A final postprocessing step merges regions
smaller than a minimum size. Important advantages of this al-
gorithm are efficiency and the ability to segment hyperspec-
tral data based on a hyperspectral distance measure. It can
trade speed for accuracy by changing merging thresholds and
minimum region size (Figure 1).

3. EVALUATION

A case study analyzes spectra for CRISM Infrared wave-
lengths from 1.0um to 2.5um. We quantify the correlations
for images FRT00003e12 and FRT00003fb9 from the Nili
Fossae region (later we omit “FRT0000” prefixes for clarity).
Spectra from the first image suggest Olivine and Phyllosil-
icate minerals [9], while the latter also evidences a strong
Olivine signature with evidence for Carbonates such as Mag-
nesite [10]. We preprocess each image using radiometric and
atmospheric correction with the Crism Analysis Tool [11].
The source matrix for image 3el2 consists of spectra
drawn from the MRO/CRISM spectral library. These include
27 examples of Olivine and 59 examples of phyllosilicates
such as Montmorillonite, Nontronite, Saponite, Kaolinite,
and Illite. We also augment image 3fb9’s library with ex-
amples of Magnesite and Hydromagnesite. This diversity
helps to account for variation within mineral species. We
L1-normalize all source spectra during unmixing so that a
common hyperparameter « affects all sources equally. Fi-
nally, we append 10 featureless line spectra to the library to
compensate for arbitrary additive offsets and constant slopes.
Figure 2 shows a typical result for CRISM image 3e12.
It identifies sites A and B that show strong signals of olivine
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Fig. 3. Site A reconstruction (Left) and constituents (Right).
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Fig. 4. Site B reconstruction (Left) and constituents (Right).

and phyllosilicate respectively. Figure 3 (Left) shows a single
pixel from site A; the black line is the original spectrum and
the red smooth line the reconstruction produced by the sparse
mixture. The plot on the right shows the top mixture com-
ponents. Unsurprisingly each is an instance of olivine from
the source library. Figure 4 shows site B with phyllosilicate
(Kaolinite, in red) in addition to olivine.

After unmixing one can quantify a mineral’s abundance
by summing all the mixing coefficients corresponding to its
library examples. We use these values to produce a “relative
abundance map” that indicates the relative concentrations of
the mineral at different superpixel locations. Our evaluation
compares these maps to two hand-tuned summary products
currently in use by Mars scientists, the OLINDEX and D2300
indicators [2]. These are functions based on slope and band
depth that respond strongly to olivine and phyllosilicates re-
spectively. Figures 5 and 6 show relative abundances and the
corresponding summary products for image 3el2.

We compute abundance maps for both small and large su-
perpixels (with minimum sizes of 20 and 100 pixels). Table
1 shows correlations between the automated abundance maps
and the summary products for the two segmentations. The
columns, from left to right, show: the mineral type and in-
dex used, the CRISM image, the number of superpixels for
coarse (C) and fine (F) segmentations, the linear correlation
between abundance maps and the selected index, the Spear-
man’s p rank correlation coefficient, the precision score, and
the recall score. These last two scores are produced by thresh-
olding summary indices and abundance maps at an appropri-
ate level to yield a binary detection decision at each pixel.
Precision considers the fraction of automatic detections that
are actually present in the summary product, while recall de-
scribes the percentage of summary product detections that are
automatically recovered. We advise caution in interpreting



Fig. 6. Phyllosilicate abundance (Left) and D2300 (Right)

l Index \ Image \ n \ corr \ p \ prec \ rec ‘
Olivine 3el2 (C)664 | 0.87 | 091 | 0.89 | 0.81
(OLIND) (F)3667 | 0.90 | 095 | 0.92 | 0.83

3fb9 (C)594 | 0.87 | 090 | 091 | 0.86
(F)3676 | 0.92 | 094 | 0.94 | 0.87
(C)664 | 0.67 | 0.46 | 0.76 | 0.55
(F)3667 | 0.73 | 0.49 | 0.80 | 0.53

Phyllosil. 3el2
(D2300)

Table 1. Comparative evaluation (see text for details).

these values since the summary products do not constitute a
ground-truth standard to determine mineral abundances and
in the case of discrepancies either method could be erroneous.

4. DISCUSSION

The unmixing strategy achieves high correlation with the spe-
cific summary products despite being an automated, general
method. The abundance maps are fully interpretable through
the linear mixing model and component minerals. Lower
correlation and Spearman p scores for the Phyllosilicate in-
dicator reflect the smaller percentage of this material in the
image; irrelevant low-abundance superpixels dominate the
score. Umixing successfully detects carbonate in image 3fb9,
but we forgo a comparison since standard carbonate summary
products use features outside our 1pm — 2.5um range.

We have presented preliminary results from an unmixing
approach to mineralogical search and survey in large image
catalogs. Exponential priors encourage a sparse unmixing
solution and a graph-based “superpixel” segmentation com-
presses high-resolution hyperspectral images for improved
speed. Rather than relying exclusively on particular diag-

nostic slopes or band depths, which may be at or below the
level of noise, the unmixing approach generates mixtures to
explain the entire spectral waveshape. This may eventually
improve detection sensitivity beyond that offered by static
decision rules. Sparse superpixel unmixing is promising for
general automated analysis of hyperspectral image catalogs.
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